AQA

Physics Equations Sheet GCSE Combined Science: Trilogy (8464) GCSE Combined Science: Synergy (8465)

1	$(\text { final velocity })^{2}-(\text { initial velocity })^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2$ a s
2	elastic potential energy $=0.5 \times$ spring constant $\times(\text { extension })^{2}$	$E_{\mathrm{e}}=\frac{1}{2} k \mathrm{e}^{2}$
3	change in thermal energy $=$ mass \times specific heat capacity \times temperature change	$\Delta E=m c \Delta \theta$
4	$\text { period }=\frac{1}{\text { frequency }}$	$T=\frac{1}{f}$
5	force on a conductor (at right angles to a magnetic field) carrying a current $=$ magnetic flux density \times current \times length	$F=B I l$
6	thermal energy for a change of state $=$ mass \times specific latent heat	$E=m L$
7	potential difference across primary coil \times current in primary coil $=$ potential difference across secondary coil \times current in secondary coil	$V_{\mathrm{p}} I_{\mathrm{p}}=V_{\mathrm{s}} I_{\mathrm{s}}$

Higher Tier only equations are in bold.

Physics Equations Sheet
GCSE Physics (8463)

1	pressure due to a column of liquid $=$ height of column \times density of liquid \times gravitational field strength (\mathbf{g})	$p=h \rho g$
2	$(\text { final velocity })^{2}-(\text { initial velocity })^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2 a s$
3	$\text { force }=\frac{\text { change in momentum }}{\text { time taken }}$	$F=\frac{m \Delta v}{\Delta t}$
4	elastic potential energy $=0.5 \times$ spring constant $\times(\text { extension })^{2}$	$E_{e}=\frac{1}{2} k e^{2}$
5	change in thermal energy $=$ mass \times specific heat capacity \times temperature change	$\Delta E=m c \Delta \theta$
6	$\text { period }=\frac{1}{\text { frequency }}$	$T=\frac{1}{f}$
7	$\text { magnification }=\frac{\text { image height }}{\text { object height }}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current $=$ magnetic flux density \times current \times length	$F=B I I$
9	thermal energy for a change of state $=$ mass \times specific latent heat	$E=m L$
10	$\frac{\text { potential difference across primary coil }}{\text { potential difference across secondary coil }}=\frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }}$	$\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{n_{\mathrm{p}}}{n_{\mathrm{s}}}$
11	potential difference across primary coil \times current in primary coil $=$ potential difference across secondary coil \times current in secondary coil	$V_{\mathrm{p}} I_{\mathrm{p}}=V_{\mathrm{s}} I_{\mathrm{s}}$
12	For gases: pressure \times volume $=$ constant	$p \mathrm{~V}=$ constant

Higher Tier only equations are in bold.

