Physics Paper 1 Checklist- Trilogy

Key Point	1	
Throughout – change the subject of an equation, change units, perform multi-step calculations		
Energy		
Name the different types of energy 'store' and describe how energy is transferred between them		
Identify ways in which energy is transferred – doing work, current flowing, radiation		
Identify where energy is wasted and describe where this goes		
Calculate the efficiency of devices		
Use Sankey diagrams to represent energy transfers or calculate efficiency		
Define and calculate kinetic energy		
Define and calculate gravitational potential energy		
Use values for GPE to calculate maximum theoretical velocity of a raised object using KE equation		
Explain why theoretical velocity will not normally be reached		
Calculate the elastic potential energy in a stretched or squashed object		
Use and manipulate the specific heat capacity equation to calculate energy/mass/temperature change/specific heat capacity given the others		
Define specific heat capacity		
Describe practical procedures to measure specific heat capacity		
Calculate power using P=E/t or P=Work done/t		
Describe the relationship between watts and joules		
Define a 'closed system' and explain what happens to total energy when energy transfers happen in a closed system		
Describe ways to reduce unwanted energy transfers		Ī
Describe methods to investigate the effectiveness of different insulators		
Describe factors that affect the thermal conductivity of a building		
Describe the use, reliability and environmental impacts of renewable and non-renewable energy resources		

Electricity	
Describe what is meant by an electric current and calculate it using Q=It	
Describe what is meant by resistance and calculate values for it using Ohm's Law	
Calculate current, voltage and resistance in series and parallel circuits	
Recognise, describe and explain the shape of current-voltage graphs for a filament bulb, ohmic resistor and a diode	
Use and recognise the symbols for all the circuit components covered	
Calculate electrical power using E=PT, P=I ² R, P=VI and perform multi step calculations to do this	
Calculate energy transferred using E = Q x V	

Describe and explain uses of LDRs – e.g switching on lights when it gets dark	
Recognise, describe and explain the shape of IV graphs for filament lamp, diode, thermistor and LDR	
Label the features and describe the safe operation of a 3 pin plug	
Explain the difference between direct and alternating pd	
Calculate electrical power and energy transferred for given appliances	
Describe the features of the National Grid	
Describe and explain the production of static electricity and sparking	
Interpret and explain evidence on how charged objects can exert forces of attraction and repulsion, at a distance	
Describe the production of an electric field around a charged object and draw the pattern	
Particle theory	
Describe density in terms of particle arrangement	
Use Density = mass/volume to calculate values and use the correct units	
Use Density = mass/volume to calculate values and use the correct units Explain the term 'internal energy'	
Explain the term 'internal energy'	
Explain the term 'internal energy' Describe differences in particle arrangement and energy in solids, liquids and gases	
Explain the term 'internal energy' Describe differences in particle arrangement and energy in solids, liquids and gases Explain what happens to particles during a change of state	
Explain the term 'internal energy' Describe differences in particle arrangement and energy in solids, liquids and gases Explain what happens to particles during a change of state Use the equation E=mL to calculate mass, specific latent heat or energy	
Explain the term 'internal energy' Describe differences in particle arrangement and energy in solids, liquids and gases Explain what happens to particles during a change of state Use the equation E=mL to calculate mass, specific latent heat or energy Distinguish between specific heat capacity and specific latent heat	
Explain the term 'internal energy' Describe differences in particle arrangement and energy in solids, liquids and gases Explain what happens to particles during a change of state Use the equation E=mL to calculate mass, specific latent heat or energy Distinguish between specific heat capacity and specific latent heat Define the terms specific latent heat, latent heat of fusion, latent heat of vaporisation	
Explain the term 'internal energy'Describe differences in particle arrangement and energy in solids, liquids and gasesExplain what happens to particles during a change of stateUse the equation E=mL to calculate mass, specific latent heat or energyDistinguish between specific heat capacity and specific latent heatDefine the terms specific latent heat, latent heat of fusion, latent heat of vaporisationExplain the term 'gas pressure' and explain how temperature affects this	

Atoms and Nuclear Physics	
Label the parts of an atom and state approximate sizes of the atom and the nucleus	
Explain what might cause changes in distance of electrons from the nucleus	
Describe the plum pudding model of the atom and how the atomic model has changed over time – e.g Rutherford's scattering experiment	
Compare the plum pudding model with the modern model of the atom	
Describe what is meant by an isotope and compare given isotopes	
Describe the properties and origins of alpha, beta and gamma radiation	
Describe how radiation levels are measured and give the unit	
Complete nuclear equations for alpha and beta decay	
Describe what is meant by the half-life of a radioactive isotope and obtain values for this from a decay curve	
Choose an appropriate source for a particular purpose, given some information	
Explain the difference between contamination and irradiation and compare the hazards of each	

Describe the sources of background radiation and factors that can affect levels	
Describe the use of radiation in medicine for exploration or treatment	
Evaluate the risks involved in nuclear medicine techniques	
Explain the processes of nuclear fission and fusion	

Physics paper 2 Revision Checklist - Trilogy

Key Point	1	2
Forces		
Name contact and non-contact forces and describe their interaction		
Define scalar and vector quantities and give examples of each		
Calculate resultant forces		
Define weight and use w=mxg to calculate any one of those values		
Define 'centre of mass'		
Draw free body diagrams to scale including resolving forces at different angles		
Know the equation to calculate work done and apply this to find work done, force or distance		
Describe the relationship between joules and newton-metres and convert between them		
Give examples of forces involved in stretching or compression and explain the difference between elastic deformation and inelastic deformation		
Describe the features of a graph of force applied versus the extension of a spring		
Know Hooke's Law (f = ke) and apply it in stretching or compression scenarios		
Calculate work done during stretching or compressing using e= ½ k x e ²		
Motion		
Interpret distance-time graphs to calculate velocity and total distance moved		
Explain the difference between distance and displacement		
Know typical values for speed for walking, running, cycling and sensible values for car, train and airplane speeds		
Describe the difference between velocity and speed and calculate them using s=d/t		
Describe circular motion in terms of speed and direction		
Interpret distance time graphs to find speed, including drawing a tangent if the object is accelerating		
Describe what is meant by acceleration		
Calculate the acceleration or deceleration of an object using a=v-u/t, using negative values to represent deceleration		
Use uniform acceleration equation to calculate acceleration, velocity or distance		
Know that acceleration under gravity is 9.8 m/s ²		
Interpret velocity-time graphs to calculate acceleration, velocity and total distance/displacement		
Describe the change in forces that occur during free fall of an object through a fluid		
Define terminal velocity		
Apply Newton's first law to predict the effect of balanced and unbalanced forces on stationary and moving objects		
Explain what is meant by 'inertia' and find inertial mass using f=ma		
Use Newton's second law (f=ma) to calculate force, mass or acceleration		
Apply Newton's third law to equilibrium situations – ie describe how forces exerted by two objects interacting are equal and opposite		

Define the terms stopping distance, thinking distance and braking distance and know how speed affects overall stopping distance	
Explain how reaction time can affect thinking distance and how this can be measured	
Describe physical factors that can affect braking distance – condition of tyres, road etc	
Explain why large decelerations are dangerous and estimate values forces involved in deceleration of road vehicles	
Describe what is meant by momentum and calculate values from an equation	
Explain what is meant by 'conservation of momentum' and apply this in calculations	
Waves	
Describe the origin and properties of longitudinal and transverse waves and give examples	
Calculate frequency of waves using frequency = number of waves/time and use Hz as the unit	
Use the wave equation to calculate wave speed, frequency or wavelength including using standard form	
Describe properties of all EM waves	
Name the 7 EM waves and describe their uses and dangers	
Link uses of EM waves to their properties	
Describe three things that can happen to waves when they meet an object	
Explain what happens to waves as they travel into more or less dense materials	
Label a diagram to show refraction of light, including the normal and angles of incidence and refraction	
Describe ways of measuring wave speed– e.g ripple tank, waves on a string	
Describe how to measure the speed of sound and know it's approximate value in air	
Explain how radio waves are generated by oscillating charges in the transmitter and how this generates a current in the receiver	
Explain how microwaves can be used to communicate with satellites and how microwaves of a different wavelength can be used to cook food	
Explain how IR radiation emission and absorption is affected by surface and describe an investigation to measure this	
Explain some of the dangers of EM waves and how the radiation dose is measured	

Magnetism & electromagnetism	
Describe the force between two poles of a magnet	
Describe the difference between permanent and induced magnets	
Explain how a current produces a magnetic field and how a solenoid can increase the strength	
Explain how the interaction of a magnetic field induce by a current and a magnetic field between a horseshoe magnet can produce movement of the wire	
Explain the motor effect and use Flemings left hand rule to predict direction of movement	
Describe factors that can affect the size of the force acting on a wire and use F=BII to calculate it	
Explain how an electric motor can produce a turning effect	